Performance Specification

Public Channel / Software

Specifications regarding scaling capabilities and resources required.

This website is currently deployed on a 8 GB memory 4 CPU server. Results with 8 "virtual users" each of which sent 8 HTTP GET requests/second to https://sbo.tech/ and a subsequent HTTP GET requests to https://sbo.tech/security

[BEGIN TEST]
Started phase 0, duration: 60s @ 19:40:15(-0400) 2019-07-11
Report @ 19:40:25(-0400) 2019-07-11
Elapsed time: 10 seconds
Scenarios launched: 79
Scenarios completed: 77
Requests completed: 77
RPS sent: 8.05
Request latency:
min: 273.4
max: 469.2
median: 297.4
p95: 378.7
p99: 456.8
Codes:
200: 77

Report @ 19:40:35(-0400) 2019-07-11
Elapsed time: 20 seconds
Scenarios launched: 80
Scenarios completed: 78
Requests completed: 78
RPS sent: 8.01
Request latency:
min: 264.4
max: 394.5
median: 290.8
p95: 328.2
p99: 386.1
Codes:
200: 78

Report @ 19:40:45(-0400) 2019-07-11
Elapsed time: 30 seconds
Scenarios launched: 80
Scenarios completed: 82
Requests completed: 82
RPS sent: 8.01
Request latency:
min: 266.7
max: 674.3
median: 285.1
p95: 370.8
p99: 588.2
Codes:
200: 82

Report @ 19:40:55(-0400) 2019-07-11
Elapsed time: 40 seconds
Scenarios launched: 80
Scenarios completed: 80
Requests completed: 80
RPS sent: 8.02
Request latency:
min: 258.8
max: 357.7
median: 287
p95: 317.2
p99: 352.4
Codes:
200: 80

Report @ 19:41:05(-0400) 2019-07-11
Elapsed time: 50 seconds
Scenarios launched: 80
Scenarios completed: 80
Requests completed: 80
RPS sent: 8.01
Request latency:
min: 267.3
max: 345.2
median: 288.5
p95: 332.2
p99: 342.7
Codes:
200: 80

Report @ 19:41:15(-0400) 2019-07-11
Elapsed time: 1 minute, 0 seconds
Scenarios launched: 80
Scenarios completed: 80
Requests completed: 80
RPS sent: 8.01
Request latency:
min: 264.9
max: 346.6
median: 292
p95: 331.9
p99: 346.4
Codes:
200: 80

Report @ 19:41:15(-0400) 2019-07-11
Elapsed time: 1 minute, 0 seconds
Scenarios launched: 1
Scenarios completed: 3
Requests completed: 3
RPS sent: 2
Request latency:
min: 272.5
max: 295.7
median: 292.3
p95: 295.7
p99: 295.7
Codes:
200: 3

All virtual users finished
Summary report @ 19:41:15(-0400) 2019-07-11
Scenarios launched: 480
Scenarios completed: 480
Requests completed: 480
RPS sent: 7.96
Request latency:
min: 258.8
max: 674.3
median: 290
p95: 340.4
p99: 394.2
Scenario counts:
0: 480 (100%)
Codes:
200: 480

Should your site need extraordinary performance, we are happy to work with you to scale up beyond our standard packages to accommodate your needs.

We used artillery [https://artillery.io/] to benchmark performance.

Share on Social Networks

Share Link

Use permanent link to share in social media

Share with a friend

Please login to send this presentation by email!

Embed in your website

Select page to start with

7. Some Facts

13. Deployment

25. Analyze

18. Monitor & Measure

37. Top 5 Problems in Custom Apps

2. Odoo can handle large data and transaction volumes out of the box!

19. You cannot improve what you cannot measure!  

3. On Odoo Online, a typical server hosts more than 3000 instances  100/200 new ones/day

12. Sizing For anything else, appropriate load testing is a must before going live! Then size accordingly...

44. Thank You  @odony Odoo sales@odoo.com +32 (0) 2 290 34 90 www.odoo.com

1. High Performance Odoo Olivier Dony  @odony 

42. 4. Misuse of batch API o The API works with batches o Computed fields work in batches o Model.browse() pre-fetches in batches o See @one in the new API

38. Top 5 Problems in Custom Apps o 1. Wrong use of stored computed fields o 2. Domain evaluation strategy o 3. Business logic triggered too often o 4. Misuse of the batch API o 5. Custom locking

8. PostgreSQL o Is the real workhorse of your Odoo server o Powers large cloud services o Can handle terabytes of data efficiently o Should be fine-tuned to use your hardware o Cannot magically fix algorithmic/complexity issues in [y]our code!

31. Reduce database size o Enable filestore for attachments (see FAQ ) o No files in binary fields, use the filestore  Faster dumps and backups  Filestore easy to rsync for backups too

41. 3. Busic logic triggered too often o Think about it twice when you override create() or write() to add your stuff o How often will this be called? Should it be? o Think again if you do it on a high-volume object, such as o2m line records (sale.order.line, stock.move, ...) o Again, make sure you don't alter master data

15. Deployment Architecture Single server, multi-process   PostgreSQL Store HTTP worker HTTP worker HTTP worker Cron worker gevent worker Requests Rule of thumb: --workers=$[1+$CORES*2]

21. Monitor & Measure o Build your munin dashboard o Establish what the “usual level of performance” is o Add your own specific metrics o It will be invaluable later, even if you don't know yet

5. Performance issues can be ( easily) solved  With the right tools  And the right facts

11. SQL numbers o Most complex SQL queries should be under 100ms, and the simplest ones < 5ms o RPC read transactions: <40 queries o RPC write transactions: 200+ queries o One DB transaction = 100-300 heavy locks

27. Analysis – SQL Logs o Thanks to extra PostgreSQL logging you can use pg_badger to analyze the query log o Produces a very insightful statistical report o Use EXPLAIN ANALYZE to check the behavior of suspicious queries o Keep in mind that PostgreSQL uses the fastest way, not necessarily the one you expect (e.g. indexes not always used if sequential scan is faster)

14. Odoo Architecture Front-end pages Back-end JS client  PostgreSQL Store HTTP Routing Business Logic (Apps) Controllers (Front-end, Back-end) Messaging, Notifications (mail) ORM User Interface Controllers Models Persistence

6. Odoo Performance o Some Facts Deployment Architecture o Monitor & Measure o Analyze o Top 5 Problems in Custom Apps 1 2 3 4 5

10. Transaction Sizing o Typical read transaction takes ~100ms o A single process can handle ~6 t/s o 8 worker processes = ~50 t/s o 1 interactive user = ~50 t/m peak = ~1 t/s o Peak use with 100 users = 100 t/s o On average, 5-10% of peak = 5-10 t/s

26. Analysis – Where to start? o Many factors can impact performance o Hardware bottlenecks (check munin graphs!) o Business logic burning CPU ● use ` kill -3 ${odoo_pid} ` for live traces o Transaction locking in the database o SQL query performance

9. Hardware Sizing o 2014 recommandation for single user server for up to ~100 active users o Intel Xeon E5 2.5Ghz 6c/12t (e.g. E5-1650v2) o 32GB RAM o SATA/SAS RAID-1 o On Odoo online, this spec handles 3000 dbs with a load average ≤ 3

4. Typical size of large deployments  Multi-GB database (10-20GB)  Multi-million records tables o Stock moves o Journal items o Mails / Leads  On a single Odoo server!

28. PostgreSQL Analysis o Important statistics tables o pg_stat_activity : real-time queries/transactions o pg_locks : real-time transaction heavy locks o pg_stat_user_tables : generic use stats for tables o pg_statio_user_tables : I/O stats for tables

43. 5. Custom Locking o In general PostgreSQL and the ORM do all the DB and Python locking we need o Rare cases with manual DB locking o Inter-process mutex in db (ir.cron) o Sequence numbers o Reservations in double-entry systems o Python locking o Caches and shared resources (db pool) o You probably do not need more than this!

17. PostgreSQL Deployment o Use PostgreSQL 9.2/9.3 for performance o Tune it: http://wiki.postgresql.org/wiki/Tuning_Your_PostgreSQL_Server o Avoid deploying PostgreSQL on a VM o If you must, optimize the VM for IOPS o Check out vFabric vPostgres 9.2 o Use separate disks for SYSTEM/DATA/WAL o shared_buffers: more than 55% VM RAM o Enable guest memory ballooning driver

24. Monitor PostgreSQL o Munin has many builtin plugins (enabled with symlinks) o Enable extra logging in postgresql.conf o log_min_duration_statement = 50 ● Set to 0 to log all queries ● Instagram gist to capture sample + analyze o lc_messages = 'C' ● For automated log analysis

16. Deployment Architecture Multi-server, multi-process  PostgreSQL Store  HTTP worker HTTP worker HTTP worker Cron worker gevent worker Requests  HTTP worker HTTP worker HTTP worker Cron worker gevent worker Load balancer

39. 1. Stored computed fields o Be vary careful when you add stored computed fields (using the old API ) o Manually set the right trigger fields + func store = {'trigger_model': (mapping_function, [fields...], priority) } store = True is a shortcut for: {self._name: (lambda s,c,u,ids,c: ids, None,10)} o  Do not add this on master data (products, locations, users, companies, etc.)

40. 2. Domain evaluation strategy o Odoo cross-object domain expressions do not use JOINs by default, to respect modularity and ACLs o e.g. search([('picking_id.move_ids.partner_id', '!=', False)]) o Searches all moves without partner! o Then uses “ id IN <found_move_ids>”! o Imagine this in record rules (global security filter) o Have a look at auto_join (v7.0+) 'move_ids': fields.one2many('stock.move', 'picking_id', string='Moves', auto_join=True )

20. Monitor & Measure o Get the pulse of your deployments o System load o Disk I/O o Transactions per second o Database size o Recommended tool: munin o --log-level=debug_rpc in Production! 2014-05-03 12:22:32,846 9663 DEBUG test openerp.netsvc.rpc.request: object.execute_kw time:0.031s mem: 763716k -> 763716k (diff: 0k) ('test', 1, '*', 'sale.order', 'read', (...), {...})

33. Analysis – Most written tables # SELECT schemaname || '.' || relname as table, seq_scan,idx_scan,idx_tup_fetch+seq_tup_read lines_read_total, n_tup_ins as num_insert,n_tup_upd as num_update, n_tup_del as num_delete FROM pg_stat_user_tables ORDER BY n_tup_upd DESC LIMIT 10; table seq_scan idx_scan lines_read_total num_insert num_update num_delete public.stock_move 1188095 1104711719 132030135782 208507 9556574 67298 public.procurement_order 226774 22134417 11794090805 92064 6882666 27543 public.wkf_workitem 373 17340039 29910699 1958392 3280141 1883794 public.stock_location 41402098 166316501 516216409246 97 2215107 205 public.stock_picking 297984 71732467 5671488265 9008 1000966 1954 public.stock_production_lot 190934 28038527 1124560295 4318 722053 0 public.mrp_production 270568 13550371 476534514 3816 495776 1883 public.sale_order_line 30161 4757426 60019207 2077 479752 320 public.stock_tracking 656404 97874788 5054452666 5914 404469 0 public.ir_cron 246636 818 2467441 0 169904 0

29. Analysis – Longest tables # SELECT schemaname || '.' || relname as table, n_live_tup as num_rows FROM pg_stat_user_tables ORDER BY n_live_tup DESC LIMIT 10; table num_rows public.stock_move 179544 public.ir_translation 134039 public.wkf_workitem 97195 public.wkf_instance 96973 public.procurement_order 83077 public.ir_property 69011 public.ir_model_data 59532 public.stock_move_history_ids 58942 public.mrp_production_move_ids 49714 public.mrp_bom 46258

36. Analysis – Locking o Verify blocked queries o Update to PostgreSQL 9.3 is possible o More efficient locking for Foreign Keys o Try pg_activity (top-like): pip install pg_activity # SELECT * FROM waiter_holder; relname | wpid | hpid | wquery | wdur | hquery ---------+-------+-------+--------------------------------+------------------+----------------------------- | 16504 | 16338 | update "stock_quant" set "s | 00:00:57.588357 | <IDLE> in transaction | 16501 | 16504 | update "stock_quant" set "f | 00:00:55.144373 | update "stock_quant" (2 lignes) ... hquery | hdur | wmode | hmode | ... ------------------------------+-------------------+-----------+---------------| ... <IDLE> in transaction | 00:00:00.004754 | ShareLock | ExclusiveLock | ... update "stock_quant" set "s | 00:00:57.588357 | ShareLock | ExclusiveLock |

32. Analysis – Most read tables # SELECT schemaname || '.' || relname as table, heap_blks_read as disk_reads, heap_blks_hit as cache_reads, heap_blks_read + heap_blks_hit as total_reads FROM pg_statio_user_tables ORDER BY heap_blks_read + heap_blks_hit DESC LIMIT 15; ┌───────────────────────────────┬────────────┬─────────────┬─────────────┐ │ table │ disk_reads │ cache_reads │ total_reads │ ├───────────────────────────────┼────────────┼─────────────┼─────────────┤ │ public.stock_location │ 53796 │ 60926676388 │ 60926730184 │ │ public.stock_move │ 208763 │ 9880525282 │ 9880734045 │ │ public.stock_picking │ 15772 │ 4659569791 │ 4659585563 │ │ public.procurement_order │ 156139 │ 1430660775 │ 1430816914 │ │ public.stock_tracking │ 2621 │ 525023173 │ 525025794 │ │ public.product_product │ 11178 │ 225774346 │ 225785524 │ │ public.mrp_bom │ 27198 │ 225329643 │ 225356841 │ │ public.ir_model_fields │ 1632 │ 203361139 │ 203362771 │ │ public.stock_production_lot │ 5918 │ 127915614 │ 127921532 │ │ public.res_users │ 416 │ 115506586 │ 115507002 │ │ public.ir_model_access │ 6382 │ 104686364 │ 104692746 │ │ public.mrp_production │ 20829 │ 101523983 │ 101544812 │ │ public.product_template │ 4566 │ 76074699 │ 76079265 │ │ public.product_uom │ 18 │ 70521126 │ 70521144 │ │ public.wkf_workitem │ 129166 │ 67782919 │ 67912085 │ └───────────────────────────────┴────────────┴─────────────┴─────────────┘

22. Monitor & Measure #!/bin/sh #%# family=manual #%# capabilities=autoconf suggest case $1 in autoconf) exit 0 ;; suggest) exit 0 ;; config) echo graph_category openerp echo graph_title openerp rpc request count echo graph_vlabel num requests/minute in last 5 minutes echo requests.label num requests exit 0 ;; esac # watch out for the time zone of the logs => using date -u for UTC timestamps result=$(tail -60000 /var/log/odoo.log | grep "object.execute_kw time" | awk "BEGIN{count=0} (\$1 \" \" \$2) >= \"`date +'%F %H:%M:%S' -ud '5 min ago'`\" { count+=1; } END{print count/5}") echo "requests.value ${result}" exit 0 Munin plugin for transactions/minute

30. Analysis – Biggest tables # SELECT nspname || '.' || relname AS "table", pg_size_pretty(pg_total_relation_size(C.oid)) AS "total_size" FROM pg_class C LEFT JOIN pg_namespace N ON (N.oid = C.relnamespace) WHERE nspname NOT IN ('pg_catalog', 'information_schema') AND C.relkind <> 'i' AND nspname !~ '^pg_toast' ORDER BY pg_total_relation_size(C.oid) DESC LIMIT 10; ┌──────────────────────────────────────────┬────────────┐ │ table │ total_size │ ├──────────────────────────────────────────┼────────────┤ │ public.stock_move │ 525 MB │ │ public.wkf_workitem │ 111 MB │ │ public.procurement_order │ 80 MB │ │ public.stock_location │ 63 MB │ │ public.ir_translation │ 42 MB │ │ public.wkf_instance │ 37 MB │ │ public.ir_model_data │ 36 MB │ │ public.ir_property │ 26 MB │ │ public.ir_attachment │ 14 MB │ │ public.mrp_bom │ 13 MB │ └──────────────────────────────────────────┴────────────┘

23. Monitor & Measure #!/bin/sh #%# family=manual #%# capabilities=autoconf suggest case $1 in config) echo graph_category openerp echo graph_title openerp rpc requests min/average response time echo graph_vlabel seconds echo graph_args --units-exponent -3 echo min.label min echo min.warning 1 echo min.critical 5 echo avg.label average echo avg.warning 1 echo avg.critical 5 exit 0 ;; esac # watch out for the time zone of the logs => using date -u for UTC timestamps result=$(tail -60000 /var/log/openerp.log | grep "object.execute_kw time" | awk "BEGIN{sum=0;count=0} (\ $1 \" \" \$2) >= \"`date +'%F %H:%M:%S' -ud '5 min ago'`\" {split(\$8,t,\":\");time=0+t[2];if (min==\"\") { min=time}; sum += time; count+=1; min=(time>min)?min:time } END{print min, sum/count}") echo -n "min.value " echo ${result} | cut -d" " -f1 echo -n "avg.value " echo ${result} | cut -d" " -f2 exit 0 Munin plugin for response time

34. Analysis – Locking (9.1) -- For PostgreSQL 9.1 create view pg_waiter_holder as select wait_act.datname, pg_class.relname, wait_act.usename, waiter.pid as waiterpid, waiter.locktype, waiter.transactionid as xid, waiter.virtualtransaction as wvxid, waiter.mode as wmode, wait_act.waiting as wwait, substr(wait_act.current_query,1,30) as wquery, age(now(),wait_act.query_start) as wdur, holder.pid as holderpid, holder.mode as hmode, holder.virtualtransaction as hvxid, hold_act.waiting as hwait, substr(hold_act.current_query,1,30) as hquery, age(now(),hold_act.query_start) as hdur from pg_locks holder join pg_locks waiter on ( holder.locktype = waiter.locktype and ( holder.database, holder.relation, holder.page, holder.tuple, holder.virtualxid, holder.transactionid, holder.classid, holder.objid, holder.objsubid ) is not distinct from ( waiter.database, waiter.relation, waiter.page, waiter.tuple, waiter.virtualxid, waiter.transactionid, waiter.classid, waiter.objid, waiter.objsubid )) join pg_stat_activity hold_act on (holder.pid=hold_act.procpid) join pg_stat_activity wait_act on (waiter.pid=wait_act.procpid) left join pg_class on (holder.relation = pg_class.oid) where holder.granted and not waiter.granted order by wdur desc;

35. Analysis – Locking (9.2) -- For PostgreSQL 9.2 create view pg_waiter_holder as select wait_act.datname, wait_act.usename, waiter.pid as wpid, holder.pid as hpid, waiter.locktype as type, waiter.transactionid as xid, waiter.virtualtransaction as wvxid, holder.virtualtransaction as hvxid, waiter.mode as wmode, holder.mode as hmode, wait_act.state as wstate, hold_act.state as hstate, pg_class.relname, substr(wait_act.query,1,30) as wquery, substr(hold_act.query,1,30) as hquery, age(now(),wait_act.query_start) as wdur, age(now(),hold_act.query_start) as hdur from pg_locks holder join pg_locks waiter on ( holder.locktype = waiter.locktype and ( holder.database, holder.relation, holder.page, holder.tuple, holder.virtualxid, holder.transactionid, holder.classid, holder.objid, holder.objsubid ) is not distinct from ( waiter.database, waiter.relation, waiter.page, waiter.tuple, waiter.virtualxid, waiter.transactionid, waiter.classid, waiter.objid, waiter.objsubid )) join pg_stat_activity hold_act on (holder.pid=hold_act.pid) join pg_stat_activity wait_act on (waiter.pid=wait_act.pid) left join pg_class on (holder.relation = pg_class.oid) where holder.granted and not waiter.granted order by wdur desc;

Views

  • 2489 Total Views
  • 2009 Website Views
  • 480 Embeded Views

Actions

  • 0 Social Shares
  • 0 Likes
  • 0 Dislikes
  • 0 Comments

Share count

  • 0 Facebook
  • 0 Twitter
  • 0 LinkedIn
  • 0 Google+

Embeds 3

  • 36 sbo.tech
  • 30 sbo.tech:8069
  • 5 138.197.161.115:8069